S.E. (Civil)

201003 : FLUID MECHANICS

(2019 Pattern) (Semester - I)

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates :

1) Answer Q1 or Q2, Q3 or Q4.
2) Answers to the all questions should be written in single answer-book.
3) Neat diagrams must be drawn wherever necessary.
4) Figures to the right indicate full marks.
5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator (non programmable) and steam tables is allowed.
6) Assume suitable data, if necessary.

Q1) a) If the velocity distribution over a plate is given byy $=\frac{2}{3} y-y^{2}$ in which u is the velocity in meter per second at a distance y meters above the plate, determine thy shear stress at $y=0$ and $y=0.16 \mathrm{~m}$. Take dynamic viscosity of fly 8 as 8.65 poise.
b) Derive the expression with usual notations for the total pressure and centre d pressure on vertical plane surface.

Q2) a) A vertical gate closes a horizontal tunnel 5 m high and 3 m wide running full with water. The pressure at the bottom of the gate is $196 \mathrm{KN} / \mathrm{m}^{2}$. Determine the total pressure on the gate and the position of the centre or pressure.
b) Define : i) Mass Density ii) Specific Gravity iii) Specific Weight iv) Specific Volume v) Capillarity vi) Viscosity vii) Surface Tension viii) Vapor pressure

Q3) a) The velocity components in a two-dimensional flow field for an incompressible fluid are expressed as :
$u=\frac{y^{3}}{3}+2 x-x^{2} y y=x y^{2}-2 y-\frac{x^{3}}{3}$
Obtain an expression for the stream function Ψ.
b) Derive Euler's equation of motion along a streamline and obtain the Bernoulli's Equation from it. State also the assumptions made for it. [8]

OR
Q4) a) What is meant by HGL and TEL? Explain it with neat sketch.
b) Explain Venturimeter in detail with neat sketch.
c) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is $2.6 \mathrm{~m} / \mathrm{s}$, find the discharge in this pipe. Also, determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is $2.1 \mathrm{~m} / \mathrm{s}$.

